Graphical abstracts

Diversity-based strategy for discovery of environmentally benign organocatalyst: diamine-protonic acid catalysts for asymmetric direct aldol reaction

Tetrahedron 58 (2002) 8167

Masakazu Nakadai, Susumu Saito and Hisashi Yamamoto*

Graduate School of Engineering, Nagoya University, SORST, Japan Science and Technology Corporation (JST), Chikusa, Nagoya 464-8603, Japan

$$R^1$$
 + R^3 chiral diamine-protonic acid catalysts R^1 R^3

Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(IV) or givenium(IV) solts

Tetrahedron 58 (2002) 8179

zirconium(IV) salts

Kazuaki Ishihara, Masaya Nakayama, Suguru Ohara and Hisashi Yamamoto*

Graduate School of Engineering, Nagoya University, SORST, Japan Science and Technology Corporation (JST), Chikusa, Nagoya 464-8603, Japan

$$R^{1}CO_{2}H + R^{2}OH \text{ or } R^{2}SH$$
an equimolar mixture
$$R^{1}CO_{2}H + R^{2}OH \text{ or } R^{2}SH$$

$$ArH$$

$$ArH$$

$$Azeotropic reflux with removal of water$$

Asymmetric catalysis by 1,1'-binaphthyl compounds with conformation-defined 3,3'-aryl substituents

Tetrahedron 58 (2002) 8189

Duane L. Simonson, a Kevin Kingsbury, Ming-Hua Xu, Qiao-Sheng Hu, Michal Sabat and Lin Pua.*

^aDepartment of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA

^bDepartment of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA

Three 1,1'-binaphthyl-based diastereomeric chiral ligands containing conformation-defined 3,3'-aryl substituents are synthesized and characterized. Their use in the asymmetric diethylzinc addition to aldehydes reveals that the 3,3'-aryl conformations have strong influence on their catalytic properties.

Lewis acid catalyzed stereoselective hydrosilylation of ketones under the control of σ - π chelation

Tetrahedron 58 (2002) 8195

Naoki Asao, Takeshi Ohishi, Kenichiro Sato and Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, 980-8578 Sendai, Japan

Stereocontrolled radical polymerization of acrylamides and methacrylamides using Lewis acids

Tetrahedron 58 (2002) 8205

Shigeki Habaue, Yutaka Isobe and Yoshio Okamoto*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Combined Lewis acid catalysts in shotgun process: a convenient synthesis of the female sex pheromone of the red-bollworm moth

Tetrahedron 58 (2002) 8211

Yoshifumi Nagano, Akihiro Orita and Junzo Otera*

Department of Applied Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan

Trimethylsilyl bis(trifluoromethanesulfonyl)imide as a tolerant and environmentally benign Lewis acid catalyst of the Diels-Alder reaction

Tetrahedron 58 (2002) 8219

Benoit Mathieu^a and Léon Ghosez^{a,b,*}

^aDepartment of Chemistry, University of Louvain, 1 Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium

^bEuropean Institute of Chemistry and Biology (IECB-ENSCPB), 16 Avenue Pey-Berland, F-330607 Pessac, France

 $TMSNTf_2$ is an excellent and tolerant catalyst for reaction of α,β -unsaturated esters in Diels-Alder reactions.

TMSNTf₂ +
$$\bigcirc$$
 RO TMS \bigcirc \bigcirc NTf₂ \bigcirc CO₂R

Remarkable enhancement of Lewis acidity of chlorosilane

Tetrahedron 58 (2002) 8227

by the combined use of indium(III) chloride

Yoshiyuki Onishi, Takeshi Ito, Makoto Yasuda and Akio Baba*

Department of Molecular Chemistry and Handai Frontier Research Center, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Highly stereoselective synthesis of chiral aldol polymers using repeated asymmetric Mukaiyama aldol reaction

Tetrahedron 58 (2002) 8237

Shinichi Itsuno* and Kenichi Komura

Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan

$B(C_6F_5)_3$ catalyzed hydrosilation of enones and silyl enol ethers

Tetrahedron 58 (2002) 8247

James M. Blackwell, Darryl J. Morrison and Warren E. Piers*

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alta., Canada T2N 1N4

[2+1] Cycloaddition reaction of bis(iodozincio)methane with

Tetrahedron 58 (2002) 8255

1,2-diketones: face-to-face complex of bis(iodozincio)-methane and 1,2-diketones as a reaction intermediate

Seijiro Matsubara, ^{a,*} Katsumi Ukai, ^a Hideo Fushimi, ^a Yutaka Yokota, ^a Hideaki Yoshino, ^a Koichiro Oshima, ^a Kiyoyuki Omoto, ^{b,*} Atsushi Ogawa, ^b Yasunori Hioki ^b and Hiroshi Fujimoto ^b Or CH₃ CH₃

^aDepartment of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan

^bDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan

Optically active poly(β-hydroxy carbonyl)

Use of boron enolates in water. The first boron enolatemediated diastereoselective aldol reactions using catalytic boron sources

Tetrahedron 58 (2002) 8263

Yuichiro Mori, Juta Kobayashi, Kei Manabe and Shū Kobayashi*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

OSiMe₃
$$\frac{\text{cat. Ar}_2\text{BOH}}{\text{SDS, PhCO}_2\text{H}}$$
 $\frac{\text{OBAr}_2}{\text{H}_2\text{O}}$ $\frac{\text{P}^2\text{CHO}}{\text{R}^1}$ $\frac{\text{OBAr}_2}{\text{R}^2}$ $\frac{\text{P}^2\text{CHO}}{\text{R}^2}$ $\frac{\text{Syn/anti}}{\text{R}^1}$ = ~97/3

Direct, practical, and powerful crossed aldol additions between ketones and ketones or aldehydes utilizing environmentally benign TiCl₄-Bu₃N reagent

Tetrahedron 58 (2002) 8269

Yoo Tanabe,* Noriaki Matsumoto, Takahiro Higashi, Tomonori Misaki, Tomotaka Itoh, Misako Yamamoto, Kumi Mitarai and Yoshinori Nishii

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen Sanda, Hyogo 669-1337, Japan

Direct Ti-Aldol addition

ketones - ketones (aldehydes)

A highly enantioselective 1,3-dipolar cycloaddition reaction in alcoholic media: Ni(II)-pybox-tipsom catalyst

Seiji Iwasa,* Hiroyuki Maeda, Kohei Nishiyama, Shinji Tsushima, Yasuyuki Tsukamoto and Hisao Nishiyama

School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan

Tetrahedron 58 (2002) 8281

up to 98% ee

pybox ligands: R = H (pybox-hm)

R = Sit-BuMe₂ (pybox-tbdmsom) R = Sit-BuPh₂ (pybox-tbdpsom)

Catalytic asymmetric synthesis of β-hydroxy-α-amino acid esters by direct aldol reaction of glycinate Schiff bases

Tetrahedron 58 (2002) 8289

Naoki Yoshikawa and Masakatsu Shibasaki*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

The first catalytic enantioselective Diels-Alder reactions of 1,2-dihydropyridine: efficient syntheses of optically active 2-azabicyclo[2.2.2]octanes with chiral BINAM derived Cr(III) salen complexes

Norito Takenaka, Yong Huang and Viresh H. Rawal*

Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA

We have synthesized a new family of enantiomerically enriched BINAM-derived Schiff base Cr(III) complexes and evaluated them as catalysts for Diels-Alder reactions. These complexes effectively catalyze, for the first time, the enantioselective Diels-Alder reactions between 1,2-dihydropyridine and N-acryloyloxazolidinone to afford 2-azabicyclo[2.2.2]octanes in high yields (89-99%) and with moderate to good enantioselectivities (79-85%).

Tetrahedron 58 (2002) 8299

Activation of ether functionality of allyl vinyl ethers by chiral bis(organoaluminum) Lewis acids: application to asymmetric Claisen rearrangement

Tetrahedron 58 (2002) 8307

Eiji Tayama, Akira Saito, Takashi Ooi and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502 Kyoto, Japan

Application of lanthanide catalysis in the penicillin to cephalosporin conversion

Tetrahedron 58 (2002) 8313

Anthony G. M. Barrett, a,* D. Christopher Braddock, a Robin D. G. Cooperb and Julian P. Henschkea

^aDepartment of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK ^bCooper Consulting Inc, 6740 Dover Road, Indianapolis, IN 46220, USA

$$\begin{array}{c} V \\ H \\ S - X \\ CO_2PNB \\ X = CI, OAc, OPV; V = PhOCH_2CONH \\ \end{array}$$

Chiral rare earth metal complex-catalyzed conjugate addition of O-alkylhydroxylamines. An efficient synthetic entry into optically active 2-acyl aziridines

Tetrahedron 58 (2002) 8321

Xiu Lan Jin, Hiroyasu Sugihara, Kazuhiro Daikai, Hiroki Tateishi, Yong Zhi Jin, Hiroshi Furuno and Junji Inanaga* Institute for Fundamental Research of Organic Chemistry (IFOC), Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Asymmetric aldol reaction of enol trichloroacetate catalyzed by tin methoxide and BINAP·silver(I) complex

Tetrahedron 58 (2002) 8331

Akira Yanagisawa, Yukari Matsumoto, Kenichi Asakawa and Hisashi Yamamoto^{b,*}

^aDepartment of Chemistry, Faculty of Science, Chiba University, Inage, Chiba 263-8522, Japan

^bGraduate School of Engineering, SORST, Japan Science and Technology Corporation (JST), Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan

Efficient asymmetric synthesis of 1-alk-2-yne-1,4-diols

Tetrahedron 58 (2002) 8341

Roberto Sans Diez, a,b Brian Adger and Erick M. Carreira a,

^aLaboratorium für Organische Chemie, ETH-Hönggerberg HCI H337, CH-8093 Zurich, Switzerland

^bArea de Quimica Organica, Facultad de Ciencias, Universidad de Burgos, Pza. Missael Baňuelos s/n, Burgos 09001, Spain

^cSynetix, 5 Cambridge Road, Great Shelford, Cambridge CB2 5JE, UK

Recyclable Lewis acid catalysts by tuning supercritical vs liquid carbon dioxide phases: lanthanide catalysts with tris(perfluorooctanesulfonyl)methide

and

Tetrahedron 58 (2002) 8345

bis(perfluorooctanesulfonyl)amide

Joji Nishikido,^a Mayumi Kamishima,^a Hiroshi Matsuzawa^b and Koichi Mikami^{b,*}

^aThe Noguchi Institute, Tokyo 173-0003, Japan ^bDepartment of Applied Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Molecular mechanics calculations as predictors of enantioselectivity for chiral nucleophile catalyzed reactions

Tetrahedron 58 (2002) 8351

Andrew E. Taggi, Ahmed M. Hafez, Travis Dudding and Thomas Lectka*

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Temperature dependent reversal of stereochemistry in enantioselective conjugate amine additions

Tetrahedron 58 (2002) 8357

Mukund P. Sibi,* Uma Gorikunti and Mei Liu

Department of Chemistry, North Dakota State University, Fargo, ND 58105-5516, USA

A rare example of reversal of face selectivity with change in temperature is reported.